If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28x^2+59x+30=0
a = 28; b = 59; c = +30;
Δ = b2-4ac
Δ = 592-4·28·30
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-11}{2*28}=\frac{-70}{56} =-1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+11}{2*28}=\frac{-48}{56} =-6/7 $
| 8=x/4-13 | | -8w=9–7w | | 3(9+6x)=189 | | 8–y=y | | 28k^2+59k+30=0 | | |2x-3|-4=3 | | 6c=-9+7c | | -2(y-1)=4(y+3) | | -9+8q=9q | | −17x2+4x+14=0 | | 4y+18=-6y-3 | | -5f+5=-6f | | 6h=6+4h | | 2y+17=51 | | 9x²-25/5+-3x+5/2=0 | | 3x-5(x-3)=-4+3x-16 | | (w)(7+w)=228 | | 1/m+4=12 | | -6(8-2x)=-108 | | 15x+10=80 | | 6y=(5y+5) | | x-0.4x+1.5=5.7 | | 50-4/4x=0 | | (3x–25)+(3x–17)=90 | | 25=5x=35 | | a÷6+3=13 | | -6r+5r=-3 | | −3(2x−5)=15−6x-32x-5=15-6x | | 3n^2+3=78 | | 10+b=20 | | 4u-16=8(u-7) | | -1/5x+90=-2x+9 |